[10:30am] PAM review

Goal is to transmit information through some medium in space

- Air: Electromagnetic/Acoustic
- Wire: Electromagnetic
- Water: Acoustic
- Deep space: Electromagnetic

Transmitter contains several steps

- Convert bit stream into pulse stream
- Pulse shaping interpolation
- Digital modulation/upconversion
- Discrete-to-continuous conversion
- Analog/RF modulation/upconversion
- Send to antenna/transducer

2-PAM transmission

- Each bit gets mapped to a single pulse
- Bit of zero $\rightarrow-1$
- Bit of one $\rightarrow+1$
- Pulse shaping procedure can increase the range
- Take into account when scaling and before sending to D/A converter
- Pulse shaping filter plays two roles
- Time domain: Interpolation
- Should be even symmetric about midpoint
- Must be finite length and delayed to realize
- Should have zero crossings at integer multiples of T_{s} (except at zero)
- Frequency domain: Low-pass filter
- Common pulse shapes
- Sinc
- Raised cosine
- Triangular pulse
- Rectangular pulse

[11:15] Upsampling factor L

- If $L=1$, we have one sample per symbol
- As L increases, power consumption increases (assuming that fs increases with it)
- More observations create a more reliable receiver
- Less bandwidth used (relative to the sampling rate)
- $f_{s}=L f_{\text {sym }}$

[11:25] Digital interpolation example

- Upsample by $4(L=4)$
- FIR interpolation filter
- $\omega_{\max }=\frac{\pi}{L}$ at input to filter
- $\omega_{\text {stop }}<\frac{\pi}{4}$
- $\omega_{\text {pass }}=0.9 \omega_{\text {stop }}$
- Example: Fall 2021 Midterm problem 2.1

[11:30] In-lecture assignment

- Steepest descent for adaptive element
- Choose an objective function $J(x)$
- Example: $J(x)=(x-7)^{2}$ (mean squared error)
- Non-negative objective. When objective is equal to zero it is minimized
- To minimize the objective, take a sequence of steps in the opposite direction of the gradient (gradient descent)

